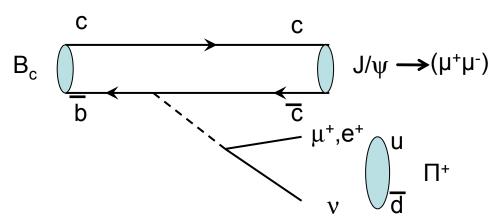
New Results on Bc in Tevatron

Azizur Rahaman
University of Pittsburgh
The DO and GDT collaborations:

7th International Conference on Hyperons, Charm and Beauty Hadrons Lancaster, July 2-8, 2006

Plan



Introduction

- Tevatron
- Bc properties
- RUN I results

Measurements

- Production
- Decay
- Mass
- Summary

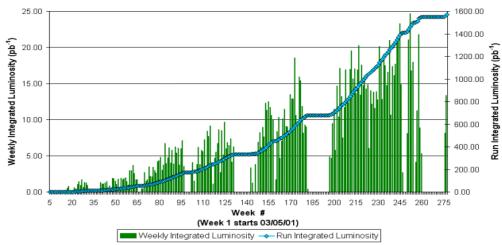
D0:

• J/ΨμX: Mass and lifetime

CDF:

- J/ΨμX: Production times BR wrt J/ΨK
- J/ΨeX: (a) Production times BR wrt J/ΨK
 (b) Lifetime
- J/Ψπ: **Mass**

Introduction

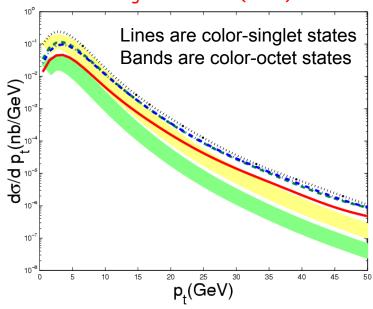

Tevatron in Run II:

RUN II started in 2001:

- √s=1.96 TeV
- Record luminosity: •Lins = 181.8×10^{30} cm⁻²s⁻¹
- Delivered: ∫Ldt ≈ 1.6 fb⁻¹

Collider Run II Integrated Luminosity

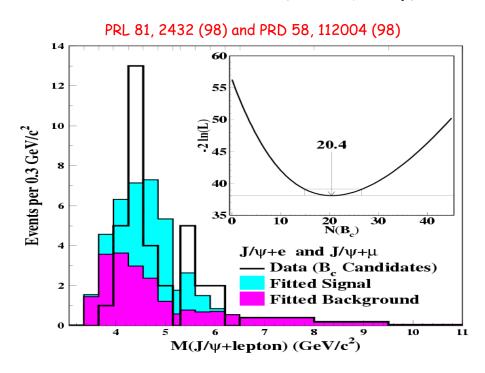
- Tevatron is a source of all B-hadron species: B_d , B_u , B_c , B_s and Λ_b
- $\sigma_b = 29.4 \pm 0.6 \pm 6.2 \ \mu b \ (|\eta| < 1)$
- Huge cross-section compared to B-factories but proportionally large backgrounds ($\approx 10^3$)
- Events have to be selected with specific triggers
- \bullet Easily recon-able J/ Ψ with di-muon trigger

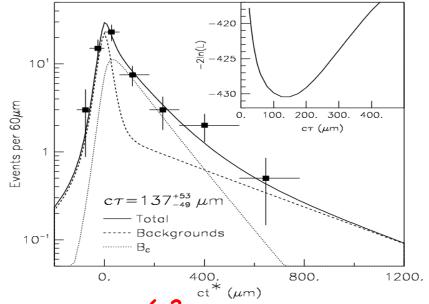


Bc Properties

- Bc is the ground state of bc system, a unique system with two heavy quarks of different flavour

 Changet al PRD 71 (2005) 074012
 - Production:
 - Mainly gg (qq) -> Bc + b + \overline{c}
 - Contribution from both color-singlet and color-octet states
 - Softer p_T distribution
 - Decay: both b and c quarks can participate in Bc decay
 - Shorter c-like lifetime
 - Large number of possible final states
 - Mass: predictions from potential models and new lattice QCD calculations
- All aspects of the theoretical work require experimental measurements and this is happening now at Tevatron!!





Bc in Run-I (91-96)

Observation and Measurements:

 $20.4_{-5.5}^{+6.2}$ Signal events

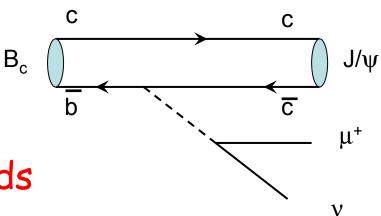
$$\tau = 0.46^{+0.18}_{-0.16} \pm 0.03 \text{ ps}$$

$$M=6.4 \pm 0.39 \pm 0.13$$

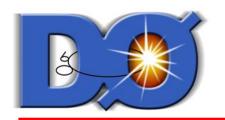
Production: $p_T(B) > 6 \text{ GeV/c}$; $|\eta| < 0.6$

$$\frac{\sigma(B_c) \times B(B_c -> J/\psi \ell v)}{\sigma(B_u) \times B(B_u -> J/\psi K)}$$

$$\frac{\sigma(B_c) \times B(B_c \to J/\psi \ell v)}{\sigma(B_u) \times B(B_u \to J/\psi K)} = 0.132^{+0.041}_{-0.037} \text{ (stat)} \pm 0.031 \text{ (syst)}_{-0.020}^{+0.032}$$



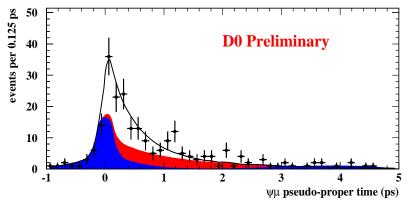
Results from DO



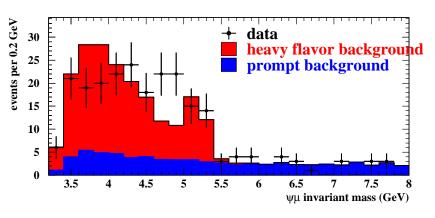
Three muon final state: Analyzed 0.21 1/fb

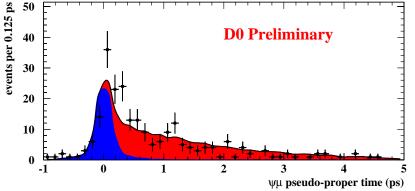
 Total 231 candidates including signal + backgrounds

- Use J/Ψ + track control sample to study background contribution:
 - Prompt background: coming from prompt J/Ψ + fake muon
 - Non-prompt or heavy flavor background: coming from J/Ψ from B mesons + fake muon



Results from DO

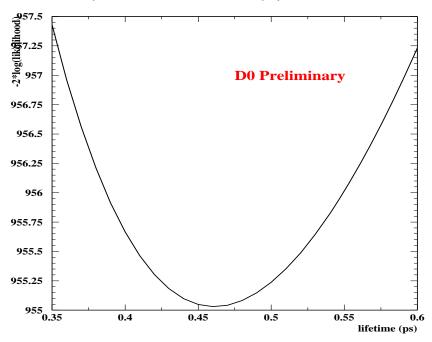


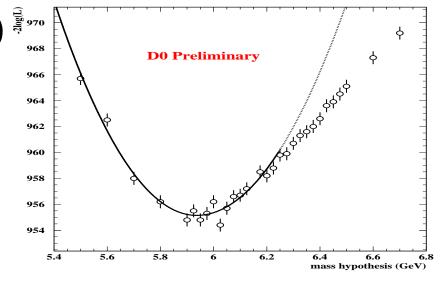

Fit with signal + background

data heavy flavor background prompt background signal 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 ψμ invariant mass (GeV)

Background only fit

Background-only fit is poor compared with addition of signal: $\Delta 2 \log(\text{likelihood})$ is 60 for 5 dof




Results from DO

Correct for missing particle(s)from MC: k-factor

 Unbinned likelihood fit to pseudo-proper time under variety of mass hypotheses

Results:

DO note: 4539-CONF

• 95 \pm 12 \pm 11 candidates

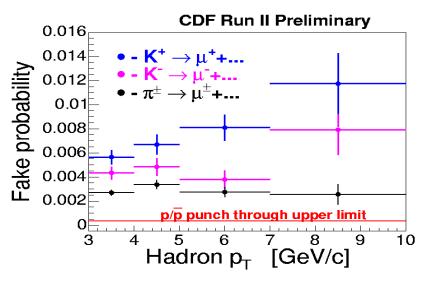
• Mass: $5.95^{+0.14}_{-0.13} \pm 0.34 \ \text{GeV}$

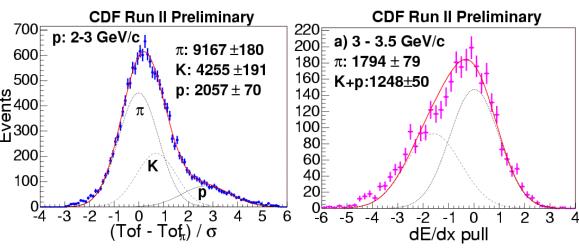
• Lifetime: $0.448^{+0.123}_{-0.096} \pm 0.121$ ps

Results from CDF

Bc-> $J/\Psi\mu X$ decay: Analyzed 0.36 1/fb

- Use 2.7 M J/Ψ events and add a muon
- Estimate contribution from backgrounds:
 - Fake muons:
 - Punch through: hadrons pass through muon detectors w/o being absorbed in calorimeters
 - Decay-in-flight: hadrons decay to muon before entering muon detectors
 - bb background: J/Ψ from b and μ from b
 - Fake J/Ψ: Background events under J/Ψ mass peak

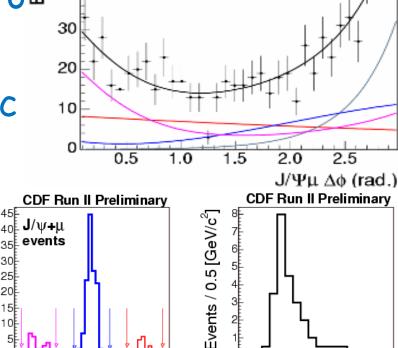

Backgrounds



Fake muon contribution

- Select K and π from D and p from Λ sample and look for association with a muon in the muon detector
- Use PID quantities (ToF and dE/dx) to $\frac{700}{600}$ estimate composition of K, π and p Fake muon:

16.3±2.9 events


More backgrounds

2.5

CDF Run II Preliminary

 bb background: Use Pythia MC with fractions from FC, FE and GS and normalized to B->J/ΨK data. Fit ΔΦ with

[GeV/c²]

Events: 817 - Total Fit Result

Gluon Splitting Fit Result Flavor Creation Fit Result Flavor Excitation Fit Result

Other J/ψμ Events

data to es.

12.7±1.7±5.7 even.

• Fake J/Ψ: Estimate from

Thands by matching

The a muon

The a muon 19.0±3.0 events

Mass (μ μ+)

Production: Bc->J/Ψμ

- In mass window 4-6 GeV:
 - events observed = 106
 - signal events = 60
- Use MC to estimate relative efficiency and get the number of candidates from data:

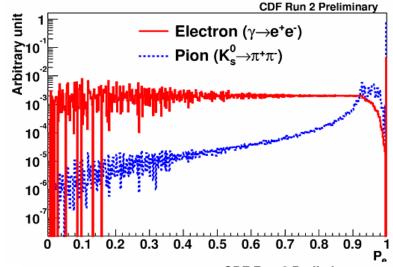
$$\frac{\sigma(B_c) \times B(B_c \to J/\psi \ell v)}{\sigma(B_u) \times B(B_u \to J/\psi K)} =$$

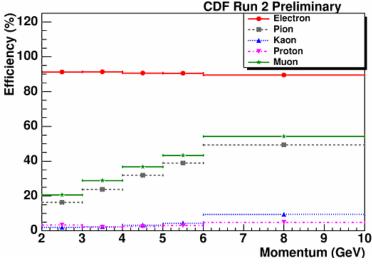
CDF Note: 7649

 $P_T(Bc) > 4 GeV; |y| < 1$

 0.249 ± 0.045 (stat) ± 0.069 (sys) $\pm {}_{0.033}^{0.082}$ (cT)

Lifetime analysis in progress

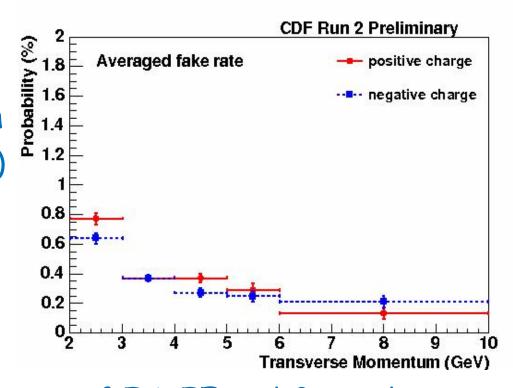

Results: Bc -> J/ΨeX



Bc -> $J/\Psi eX$: Analyzed 0.36 1/fb Add an electron to J/Ψ

- Electron identification:
 - Good track with p_T > 1 GeV and matched to central strip chambers and EM calorimeter
 - Cut on normalized cumulative likelihood function: Pe > 0.7 constructed from 10 em and tracking variables
 - Additional cut on specific ionization:

$$Ze=log \frac{(dE/dX)_{measured}}{(dE/dX)_{predicted}}$$
; $Ze/\sigma > -1.3$


Background estimate

Fake electron:

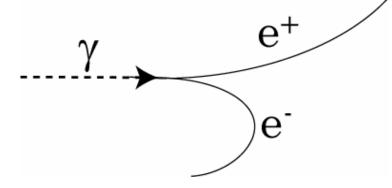
Select K and π from D and p from Λ decay with e-ID and get π and (K,p) composition from Pythia MC 15.43 \pm 0.31 events

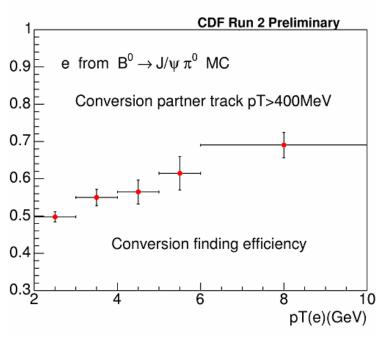
• bb background:

Use Pythia MC with fractions of FC, FE and GS and normalized to $J/\Psi K$ data

 33.63 ± 2.20 events

Photon conversion




Residual photon conversion:

- Removed during J/Ψe sample selection
- Evaluate the conversion finding efficiency from MC (B->J/ $\Psi\pi^0$; π^0 -> $\gamma\gamma$; γ -> e^+e^-)
- Estimate residual conversion electrons from J/Ψ+tagged conversion:

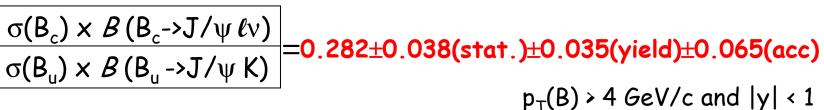
$$N_{res} = N_{con} \times (1 - \varepsilon_{con}) / \varepsilon_{con}$$

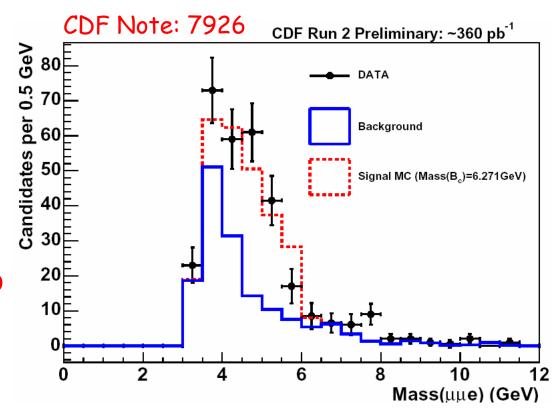
 14.54 ± 4.38 events

Production: Bc->J/Ψe

Observed:

$$178.5 \pm 14.7$$


Backgrounds:

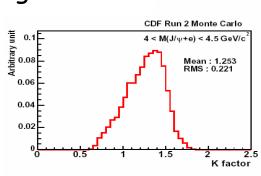

$$63.6 \pm 4.9 \pm 13.6$$

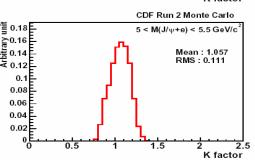
• Excess:

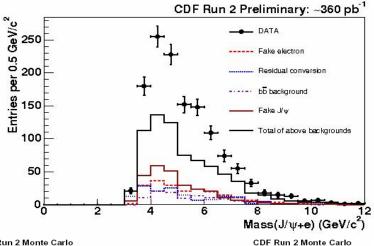
$$114.9 \pm 15.5 \pm 13.6$$

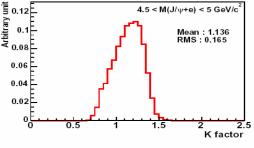
- · Significance: 5.9 σ
- Production:

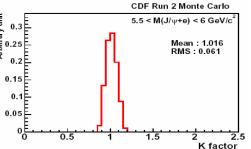
Lifetime: Bc->J/Ye

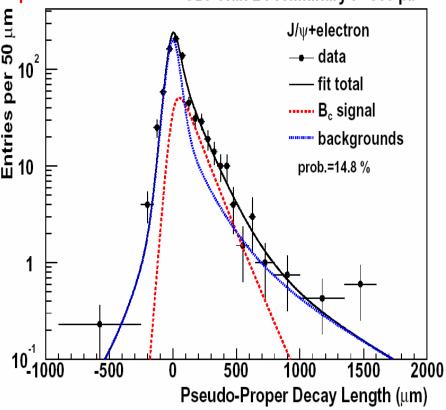



- Relax lifetime related cuts to add prompt for better parameterization; zero lifetime with Gaussian resolution
- Missing particles (neutrino etc): (pseudo-) proper decay length:




Calculate from MC:


$$K = \frac{p_T(J/\Psi + e)}{p_T(Bc)} \frac{M(Bc)}{M(J/\Psi + e)}$$

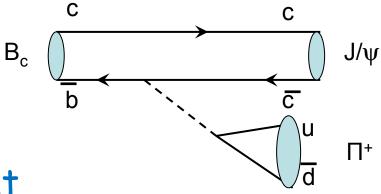


Lifetime: Results

- Un-binned likelihood fit to signal and background
 - Signal: pure exponential convoluted with Gaussian and K-factor dist from MC
 - Backgrounds: fractions and decay length from background samples

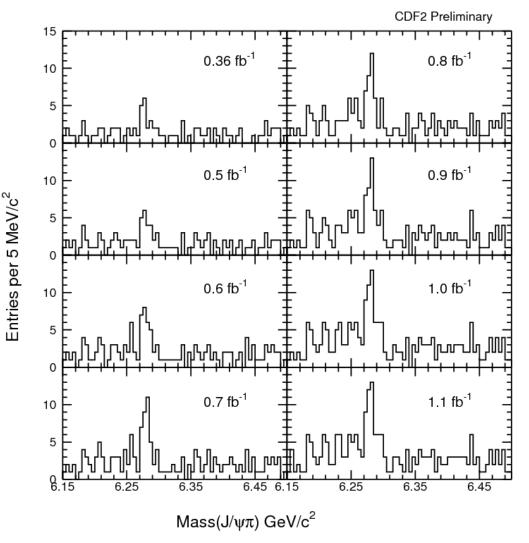
hep-ex/0603027cDF Run 2 Preliminary: ~360 pb

$$\tau(Bc)=0.474^{+0.073}_{-0.066}\pm0.033 \text{ ps}$$


$$cT(Bc)=142.1^{+21.9}_{-19.7}\pm10.0 \mu m$$

Fresh from the oven: Analyzed with 1.1 fb⁻¹

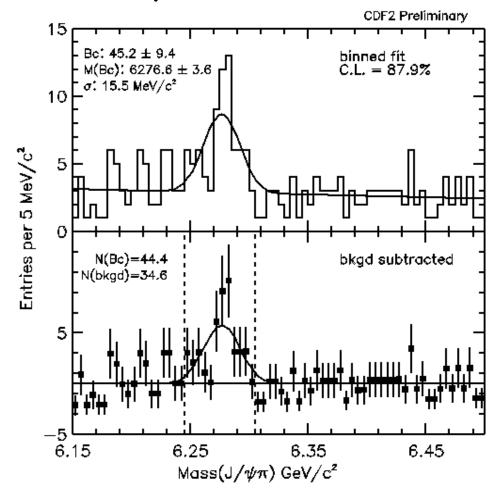
- Fully reconstructed decay mode - precise measurement of mass possible
- Blind analysis: Tune selection on data Bu -> J/Ψ K then replace K with π
- After approval "open box" and wait for significant excess of events
- Measure mass of Bc



Some selection cuts:

- p_T(K) > 1.7 GeV
- p_T(B) > 5 GeV
- $|M(\mu\mu) M(J/\Psi)| < 70 \text{ MeV}$
- Decay-length > 80 μm
- $IP_{singf}(K wrt PV) > 2.5\sigma$
- pointing angle β < 0.4 rad

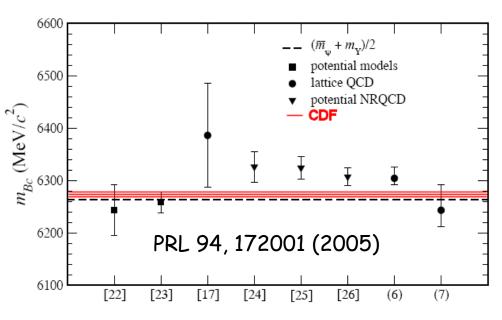
Clear indication of signal build-up with the accumulation of more and more data



Binned fit and Poisson probability

- •Binned fit using linear bkg and Gaussian signal with fixed width 15.5 MeV/c²
- Calculate siganl and bkg in 2σ region
- •Poisson probability that 34.6 background events can fluctuate to total number of events exceeding 79 is 3.0×10^{-11} correspond to 6.5σ
- •Several other studies confirm excess above 60

Mass determination:


Unbinned log likelihood fit with a linear background + Gaussian signal

parametrs: mass, fraction, slope, σ scale (1.56) for mass resolution

Observed signal: 49.1±9.7

Backgrounds: 34.1

Lattice QCD calculation

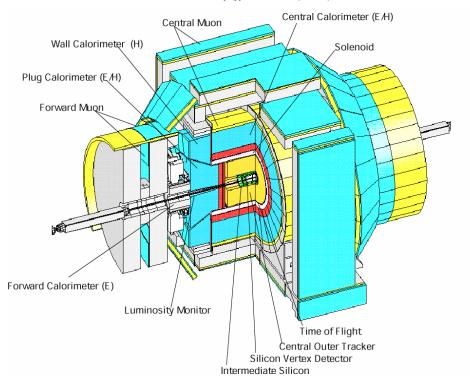
 $M(Bc)_{LAT} = 6304 \pm 12 \text{ MeV/}c^2$

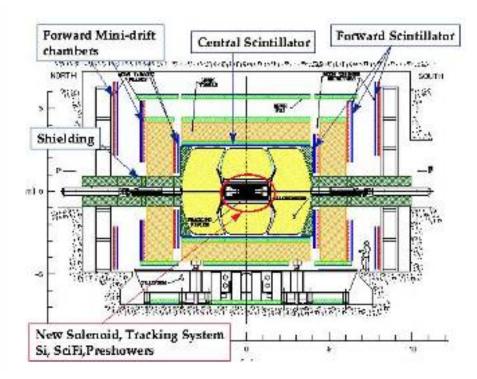
 $M(Bc)_{CDF} = 6276.5 \pm 4.0 \text{ (stat)} \pm 2.7 \text{ (sys)} \text{ MeV/c}^2$

Nuclear Physics B (Proc. Suppl.) 156 (2006) 240-243 and FERMILAB-CONF-06-074-E (Apr 2006)

Summary

- Bc study is happening at Tevatron
- · Semi-leptonic decays observed > 5σ
 - DO: Analyzed J/Ψµ with 0.21 fb⁻¹
 - CDF: Analyzed J/4 and J/4 with 0.36 fb-1
- Fully reconstructed mode $J/\Psi\pi$ > 6.5 σ
 - CDF has measured precision mass with 1.1 fb⁻¹
- · Coming soon:
 - Lifetime form J/Ψμ
 - Production spectrum


Back-up


Detectors

Excellent tracking system in 1.4 T consists of 5-layers of silicon + ISL + COT and drift muon chambers CMU + CMX $|\eta|$ < 0.6 (1.0)

Excellent coverage of tracking and muon system Forward muon system with $|\eta|$ < 2; good shielding 4-layers silicon and 16-layers Fibre-trackers in 2T

CDF Detector

DO Dtector

DO Results

Systematic errors

. .

	${\rm Mass}\;({\rm GeV}/c^2)$	Lifetime (ps)	# Signal
Statistical	$^{+0.14}_{-0.13}$	$^{+0.118}_{-0.094}$	11.8
Limited statistics of background sample	0.06	0.013	3.0
Fraction non-resonant $B_c^+ \to J/\psi \mu^+ \pi^0 \nu$	0.14	0.022	6.7
Feed-down fraction from $B_c^+ \to J/\psi(2S)\mu^+\nu$	0.08	0.017	5.4
MC signal modeling: phase space vs. ISGW	0.16	0.023	4.4
MC signal modeling: HQET vs. ISGW	0.06	0.007	1.8
$B_c p_T$ spectrum	0.05	0.004	0.8
Momentum binning	0.14	0.062	0.4
Alignment and primary vertexing algorithm	0.08	0.085	3.1
$\mathcal{P}_{\mathrm{fit}}$ selection criteria	0.06	0.028	_
Sensitivity to prompt/heavy relative bkgd fractions	0.15	0.036	_
Total systematic error	0.34	0.121	10.7

Systematic errors

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	catalog	description	Fitted $c\tau$ (μm)	$\Delta c \tau \; (\mu m)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K-factor	$M(B_c) = 6.4, 6.2 \text{ GeV}$		± 1.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K-factor	, -,	$141.9^{+21.9}_{-19.6}$	± 0.2	
	K-factor	$H_b \to J/\psi X$ spectrum	$140.8^{+21.7}_{-19.5}$	± 1.3	
	K-factor	Inclusive $J/\psi X e \nu$		± 1.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K-factor	trigger simulation	$142.4^{+21.9}_{-19.7}$	± 0.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K-factor sub-total $\Delta c \tau = \pm 2.7$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{F}_{fake-e}	Use J/ψ +trk shape directly	$140.6^{+21.5}_{-19.4}$	-1.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		use $J/\psi + e$ sideband	$136.0^{+24.8}_{-22.6}$	-6.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{F}_{conv-e}	Use tagged conv-e shape directly	$141.2^{+21.7}_{-19.5}$	-0.9	
$\mathcal{F}_{b\bar{b}}$ use GS only $138.3^{+16.6}_{-15.0}$ -3.8 $\mathcal{F}_{b\bar{b}}$ No error scaling in MC $140.9^{+21.6}_{-19.5}$ -1.2 Background shapes sub-total $\Delta c\tau = (+8.5, -7.5)$ L_{xy} resolution extra Gaussian/symmetric exponential $137.0^{+21.9}_{-19.8}, 136.5^{+21.9}_{-19.8}$ -5.6 L_{xy} resolution Punzi effect $137.3^{+22.1}_{-19.4}$ -4.8 L_{xy} resolution silicon alignment ± 1	\mathcal{F}_{conv-e}	use J/ψ +conv-e sideband	$144.8^{+21.5}_{-19.3}$	+2.7	
$\mathcal{F}_{b\bar{b}}$ No error scaling in MC $140.9^{+21.6}_{-19.5}$ -1.2 Background shapes sub-total $\Delta c\tau = (+8.5, -7.5)$ L_{xy} resolutionextra Gaussian/symmetric exponential $137.0^{+21.9}_{-19.8}, 136.5^{+21.9}_{-19.8}$ -5.6 L_{xy} resolutionPunzi effect $137.3^{+22.1}_{-19.4}$ -4.8 L_{xy} resolutionsilicon alignment ± 1	$\mathcal{F}_{bar{b}}$	use FE only	$150.2^{+17.5}_{-15.9}$	+8.1	
Background shapes sub-total $\Delta c\tau = (+8.5, -7.5)$ L_{xy} resolutionextra Gaussian/symmetric exponential $137.0^{+21.9}_{-19.8}, 136.5^{+21.9}_{-19.8}$ -5.6 L_{xy} resolutionPunzi effect $137.3^{+22.1}_{-19.4}$ -4.8 L_{xy} resolutionsilicon alignment ± 1		use GS only	$138.3^{+16.6}_{-15.0}$	-3.8	
L_{xy} resolution extra Gaussian/symmetric exponential $137.0^{+21.9}_{-19.8}, 136.5^{+21.9}_{-19.8}$ -5.6 L_{xy} resolution Punzi effect $137.3^{+22.1}_{-19.4}$ -4.8 L_{xy} resolution silicon alignment ± 1	$\mathcal{F}_{bar{b}}$	No error scaling in MC	$140.9^{+21.6}_{-19.5}$	-1.2	
L_{xy} resolution Punzi effect $137.3^{+22.1}_{-19.4}$ -4.8 L_{xy} resolution silicon alignment ± 1	Background shapes sub-total $\Delta c\tau = (+8.5, -7.5)$				
L_{xy} resolution silicon alignment ± 1	L_{xy} resolution	extra Gaussian/symmetric exponential	$137.0^{+21.9}_{-19.8}, 136.5^{+21.9}_{-19.8}$	-5.6	
	L_{xy} resolution	Punzi effect	$137.3^{+22.1}_{-19.4}$	-4.8	
L_{xy} resolution sub-total $\Delta c\tau = (+1.0, -7.4)$	L_{xy} resolution	silicon alignment		±1	
Total systematic error $\Delta c\tau = (+9.0, -10.9)$					